This suggests a way to quantify how close a rv like \bar{X}_n is to a constant like μ:

Def. A sequence ξ_1, ξ_2, \ldots of rv is said to converge in probability to a constant b if

for all $\varepsilon > 0$, $\lim_{n \to \infty} P(|\xi_n - b| < \varepsilon) = 1$.

This is denoted $\xi_n \xrightarrow{P} b$.

An immediate consequence of Chebyshev's definition is
(weak) law of large numbers

\[X_i \sim \text{IID} \] a dist. with mean \(\mu \) and variance \(\sigma^2 < \infty \), \(\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \)

\[\overline{X}_n \xrightarrow{p} \mu \sqrt{n} \]

This result has a long history: Gerolamo Cardano (1501–1576) asserted it without proof; Jacob Bernoulli (1654–1705) proved it for \((X_i, \theta) \sim \text{Bernoulli}(\theta) \) (it took him 20 years to find a correct proof, published posthumously in 1713; Bernoulli thought that this theorem proved the existence of God); Siméon Denis Poisson named it the law of large numbers in 1837.

Corollary If \(\overline{X}_n \xrightarrow{p} b \) and \(g(\cdot) \) is continuous at \(\bar{z} = b \), then \(g(\overline{X}_n) \xrightarrow{p} g(b) \).
Central Limit Theorem (CLT)

Example \(\bar{X}_n \sim N(\mu, \sigma^2/n) \), \(\sigma < \infty \) \((i=1, \ldots, n)\)

we know that \(\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \) has mean \(\mu \), variance \(\sigma^2/n \) and is normally distributed,

so that \(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \) for all \(n = 1, 2, \ldots \)

Does something like this work for other choices of \(X_i \)?

\[\bar{X}_n \sim ? \]

A: Yes! Most famous result in all of probability:

Central Limit Theorem

\[\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \rightarrow \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \]
Careful statement: \(\Xi_1, \Xi_2, \ldots \) a sequence of rv's; let \(F_n \) be the CDF of \(\Xi_n \)

\[\text{if there exists a CDF } F^* \text{ such that } \lim_{n \to \infty} F_n(x) = F^*(x), \forall x \text{ at } \]

which \(F^*(x) \) is continuous, then \(\Xi_n \xrightarrow{d} F^* \) \((\text{in distribution}) \)

CLT: \(\bar{\Xi} \sim \) any dist. with mean \(\mu \) and variance \(0 < \sigma^2 < \infty \), \(\bar{\Xi}_n \xrightarrow{d} N(\mu, \frac{\sigma^2}{n}) \)

\[\frac{\bar{\Xi}_n - \mu}{\sigma} \xrightarrow{d} N(0, 1) \mathrlap{\quad \text{Re CLT}} \]

also has a long history: it was
first demonstrated for \(\mathcal{Z} \sim \text{Bernoulli}(\theta) \) by the French/British mathematician Abraham de Moivre (1667 - 1754) in 1733; almost forgotten until revived by the French mathematician Pierre-Simon de Laplace (1749 - 1827) in 1812; almost forgotten again until 1901, when the Russian mathematician Aleksandr Lyapunov even gave a more general proof; more general proof provided by J.W. Lindeberg (Finnish mathematician (1876 - 1932)) and independently by Paul Lévy (French mathematician (1886 - 1971)) in the early 1920s. The name due to Hungarian-American mathematician George Pólya in 1920.
Example: Contaminated water supply:

\[E = \text{geoseric concentration} \]
\[\Xi = \text{lead concentration} \]
\[R = \frac{\Xi}{\Xi + 3} \] (proportion of contamination due to lead)

\[E(R) = E\left(\frac{\Xi}{\Xi + 3}\right) \text{ difficult to calculate.} \]

Simulation: Randomly sample pairs \((\Xi_i, \Xi_i) \) from the joint PDF of \((\Xi, \Xi) \), calculate \(R_i = \frac{\Xi_i}{\Xi_i + 3} \) and

\[\bar{R} = \frac{1}{n} \sum_{i=1}^{n} R_i \] (simulation) estimate of \(E(R) \).
Q: How big does n need to be to achieve an accuracy target? By definition

\[|R_i| = \left| \frac{E_i}{\sqrt{\text{i.i.d.}} E_i} \right| \leq 1 \]

\[\text{can show that} \]

as a result \[V(R_i) \leq \frac{1}{4} \]

\[\text{CLT} \]

 Says that dist. of \(\bar{R}_n \) will be close to Normal for large n, with mean \(E(R_i) \) and variance \(\frac{V(R_i)}{n} = \frac{1}{4n} \)

Suppose we want \(\bar{R}_n \) to differ from \(E(R_i) \) by no more than some tolerance \(T \) with probability at least \(1-\alpha \) ...
\[SD = \frac{1}{2\sqrt{n}} \text{ so } \frac{1}{SD} = 2\sqrt{n} \text{ and } \\
-\frac{T}{SD} \leq 2T\sqrt{n} \]

\[
I^{-1}(\frac{1}{2}) = \frac{[E(R_i) - T] - E(R_i)}{SD} = \frac{-T}{SD} \leq 2T\sqrt{n}
\]

From which:

\[n \geq \left(\frac{I^{-1}(\frac{1}{2})}{2T} \right)^2 \]

For instance, set \(T = 0.005 \) (\(\frac{1}{2} \) of 1%)

and \(d = 0.02 \) to get

\[n \geq \left(\frac{-2.326}{2(0.05)} \right)^2 = 54,119 \]

Simulation replications needed.

Case Study: Escalators in the London Underground.