This problem was due extra credit quiz is now available

social office hour Mon. 30 Jul 4pm -

\[k \to 2 - k \]

9.49)

\[k = 2 \]

\[(v_1, v_2) \]

\[A = A \]

\[k \to k \to k \to k \to k \to k \]

\[\det(A) \neq 0 \]

(\(A \) full rank)

\[E(\overline{D}_n) = \Delta \quad V(\overline{D}_n) = \frac{\sigma^2}{n} \]

\[SD(\overline{D}_n) = \sqrt{V(\overline{D}_n)} = \frac{\sigma}{\sqrt{n}} \]

\[\text{standard error} \]

Lupul's (butterfly) vote (butterfly) vote
Given this dataset & little or no info. about \(\Delta \) external to \(D \), we would conclude (infer) that \(\Delta \) is around \(\overline{\Delta_n} = 18.6 \) give or take \(2.9 \) \(\text{SD} \).
Estimated \(SE(D_n) = \hat{SE} \left(\overline{D}_n \right) = \frac{\hat{S}_d}{\sqrt{n}} \)

\[= \frac{10.1 \text{ mm Hg}}{\sqrt{12}} = 2.92 \approx 2.9 \text{ mm Hg} \]

(Jerry) (Frequentist)

\(\overline{D}_n \)

\(\Delta \pm 2SE \)

\(\Delta \pm 2SE \)

\(\Delta \approx \overline{D}_n - 2SE \)

\(P(\Delta - 2SE \leq \overline{D}_n \leq \Delta + 2SE) = 0.95 \)

\(\Delta \leq \overline{D}_n + 2SE \)

\(P(\overline{D}_n - 2SE \leq \Delta \leq \overline{D}_n + 2SE) = 0.95 \)

\(\uparrow \) random \(\uparrow \) fixed \(\uparrow \) unknown \(\uparrow \) known

as an approximate 95% confidence interval for \(\Delta \)

Neyman proposed \(\overline{D}_n \pm 2SE(\overline{D}_n) \) for confidence interval for \(\Delta \)
\(-95\% \text{ CI for } \Delta \rightarrow \)

\[
\begin{align*}
18.6 & \quad 18.6 & \quad 18.6 + 5.8 & \quad = 24.4 \\
-5.8 & & & \\
12.8 & & &
\end{align*}
\]

We're pretty sure (95\% confident) that 0 is between 12.8 and 24.4.

Devil's Advocate

\[\left(\begin{array}{c} 0 \\ 7 \\ 13 \\ 19 \\ 24 \end{array} \right) \rightarrow \]

Since \(\Delta_0 = 0 \) (null value) is not inside the 95\% CI, the diff between 0 & \(\bar{Y}_n = 18.6 \) is statistically significant.

\(\rightarrow \) difficult to attribute to unlucky random sampling \(\rightarrow \) probably real
Confidence ≠ probability

95% of the intervals would be hits

Your confidence is in the process of building the CI, not in the outcome from any single sample
we cheated by pretending $\sigma_0 = 5$.

PDF of δ_n, accounting for uncertainty about σ.

William Gosset
(1908) (Guinness Brewery)