Prof. David Draper
Department of Applied Mathematics and Statistics
University of California, Santa Cruz

AMS 131: Quiz 8

Name: \qquad

Someone offers you the possibility to play a gambling game with the following rules. First, you decide how much money you're willing to put at risk in this game: this amount let's call it A - is referred to as your stake (all the monetary quantities are in dollars in this problem). Having chosen your stake, you're allowed to bet any amount $0 \leq B \leq A$ (thus, as a decision problem, for any fixed value of A, your possible actions in this situation correspond to values of B). If you win the bet, which occurs with probability $0<p<1$, your stake becomes $(A+B)$; if you lose, it becomes $(A-B)$, and this (of course) occurs with probability $(1-p)$; and (crucially) p is known to you. Let X denote the value of your stake after the gamble has occurred, and suppose that you agree with Daniel Bernoulli that a reasonable utility function is $U(x)=1+\log (x)$.
(a) Write out the probability mass function (PMF) for X.
(b) Work out your expected utility $E[U(X)]$ in this game, as a function of A, B and p.
(c) Intuitively, what should you do (i.e., what value of B should you choose) if $p<\frac{1}{2}$? Explain briefly.
(d) Show that when $p \geq \frac{1}{2}$ your expected utility is maximized with the choice $B=$ $(2 p-1) A$. Is this answer intuitively reasonable? Explain briefly.

