3.1 The Meaning of Probability

Case study (genetics): | Tay-Sachs (T-S) disease is

what medical researchers call a storage disease in humans
(see, e.g., wuw.ninds.nih.gov/disorders/taysachs/
taysachs.htm for more details).

The symptoms of the disease result from the abnormal
accumulation of a fatty substance called ganglioside G
in many cells of the body, especialiy the
central nervous system.

[Lack of a particular enzyme, beta-hexosaminidase A (Hex
A for short), which normally breaks down ganglioside G2,
is the cause of the disorder.

An infant with the disease will have virtually none of the
enzyme, and at present this condition is typically fatal
(usually by the age of 4), with no cure in sight.

A carrier, perfectly healthy in every way, wi!llproduce the
enzyme in about half the usual amount. |

The production of Hex A in the body is determined by a
- particular pair of genes.

Carriers have within their body cells one gene (H) that
operates normally and one gene (h) that does not.

Adults can be classified as carriers or noncarriers by a
blood test to see how much Hex A is present in their cells
— if your Hex A level is 100% of normal you're a
noncarrier; if it's about 50% of normal you're a carrier.

A man and a woman thinking of getting married have |
come into the family health clinic where you work, and the
biood tests have shown them both to be carriers.

They're planning a family of five children, and they need |
your advice on the possibility of having

one or more T-S babies. |- @




Frequentist and Bayesian

Set up a simple genetic model for this situation and use it

to work out the possibilities for any one of their children —

is it possible for their second child, say, to be normal? a
carrier? a T-S baby~?

What are the chances of each of these happening for any
given child?

What is the probability that, if they do have five children,
they will have one or more T-S babies?

T he meaning of probability. | Two main ways to think
about the meaning of probability have been developed:

e the frequentist (or relative frequency) approach, in
which attention is restricted to phenomena that are
repeatable under identical conditions (with each repetition
- logically independent of the others) and the probability
P(A) of an event A is regarded as the long-run relative
frequency with which A would occur in the repetitions; and

e the Bayesian approach, in which A can be any
(true/false) proposition you want (in other words, in this
approach attention need not be restricted to repeatable

phenomena) and P(A) is a numerical measure of the
weight of evidence in favor of the statement that
- A is true.

Evidently the Bayesian approach is more general (it
includes the frequentist approach as a special case), but
it turns out that the math is a lot harder in the Bayesian

world, so in this introductory course we'll concentrate on the
frequentist story and you can hear more about the
Bayesian story later (if you have time and interest for more
study in probability and statistics).
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The Genetic Story

Let's define

A = {1 or more T-S babies in a family of 5 children of 2
parents, both of whom are carriers (Hh)};

we want P(A) (the frequentist interpretation of P(A)
involves imagining many families of 5 children, each with
2 parents who are both carriers, and asking what’'s the
relatwe frequency of 1 or more T-S babies
among these families).

First let's work out the possibilities for each of their
children one by one — given that we know each parent has
- the genetic makeup (Hh), the standard way to do this in
- genetics is with what's called a Punnett square, in which
-one parent forms the rows and the other the columns of a
2 x 2 table:

Father’s Genes
- H h
Mother's H | (H,H) | (H,h)
Genes h | (H,h) (h,h)

The simplest way we can make sense of the evidence
about the level of Hex A in the blood is to theorize that

e if you have the genetic makeup (H, H) you'll have 100%
of the normal level of Hex A (i.e., you're normal);

e if you have the genetic makeup (H,h) you'll have 50% of
the normal level of Hex A (i.e., you're a carrier); and

e if you have the genetic makeup (k, k) you'll have 0% of
the normal level of Hex A (i.e., you're a T-S baby).
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Equally Likely Model

(Genetics note: if we define phenotype at the level of
presence or absence of the disease (2 phenotypes), this is
a dominant-recessive genetic model with H dominant
and h recessive; if instead we define phenotype by the
amount of Hex A in the blood (3 phenotypes: 100%,
50%, 0% of normal), this is an additive genetic model.)

This answers some of the questions above: ves, it's
possible for any one of their children to be normal, or a
carrier, or a T-S baby; but what about the chances of

these outcomes?

When conception takes place, our current best
understanding is that all 4 of the possibilities in the 4
cells of the Punnett square are equally likely — this
means that we can apply what must certainly be the
simplest useful probability model for understanding the
real world, the equally likely model:

Equally likely model (ELM): | If you can enumerate {all

the ways the repeatable phenomenon you're thinking
about can come out} in such a way that all of these
possible outcomes are equally likely, then for any event A

P(A) = number of outcomes favorable to A
total number of possible outcomes*

Example: If I make one draw Y at random from the little
fake population data set (1,2,9) I've discussed before, by
definition of the phrase “at random’’ the ELM applies,
and immediately P(Y = 9) = 1 = 33% and

P(Y is odd) = £ = 67%.

Applying the ELM to the T-S case study, evidently for
' each of this couple's children

P(normal) = 1z = 25%, P(carrier) = 2 = 1 = 50%, and

P(T-S baby) = 1 = 25%. (50)
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Logical Equivalents

Turning now to the main question of interest in the case
study, evidently {1 or more T-S babies in a family of 5
children} is logically equivalent to

({exactly 1 T-S baby}

{exactly 3 T-S babies}

or

or

{exactly 2 T-S babies} [or
{exactly 4 T-S babies} |or

{exactly 5 T-S babies}),

so it looks like one strategy for working out P(A) is to
break it down into a bunch of simpler possibilities linked
together by a logical connective like |or| and work out how

or | behaves — in other words, that makes me wonder, for

any events A and B, how P(A or B) relates to the two
simpler ingredients {P(A), P(B)}.

Notice also that there's only one other possibility — if
these people are not going to have {1 or more T-S babies}
then they would have to have {exactly 0 T-S babies}, so

A = {1 or more T-S babies} = |not| {exactly 0 T-S babies};

this in turn makes me wonder how P(A) and P(not A)
are related.

And finally if these people were indeed to have {exactly 0
T-S babies}, this would be logically equivalent to

({not a T-S baby on child 1}
2} |and | {not a T-S baby on child 3} |and| {not a T-S baby
on child 4} |and | {not a T-S baby on child 5}),

and| {not a T-S baby on child

so I'm also left wondering, for any events A and B, how
P(A and B) relates to the two simpler ingredients
{P(A),P(B)}.




Venn Diagrams

In intuitively working out how |and |, |or|, and | not
behave, it helps (as Triola and Triola note in Section 3-3)

to make use of what are called | Venn diagrams|.

The idea is to draw a rectangular box to stand for all the
different ways the repeatable experiment you're
interested in could come out and put one or more blobs
A, B,... inside the box to stand for all the ways A, B,...
could turn out to be true; then I imagine shooting at the
box in such a way that (a) the shot must fall somewhere
inside and (b) every point inside the box has the same
chance of being where the shot falls.

From this, graphically P(A) must equal the ratio of the
area of the blob for A to the total area of the box:

(aves
1)

Using the relative frequency intuitive idea of probability, the
‘next basic thing to notice is that for any event A the relative
frequency with which it could happen, in (imaginary)
repetitions of the basic thing you're imagining repeating,
can’t be less than 0 (or 0%) or more than 1 (or 100%):

|For any event A, 0% =0 < P(A4) <1=100%.

In other words, the total area of the box is 1 or 100%.
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Basic Probability Rules

The next thing to notice is that, for any event A, the shot
either has to fall inside A (which is like saying that A is
true) or it has to fall inside (not A) (which is like saying

that A is false), and it can't do both.

- This means that (4, not 4) forms what's called a

partition |:

a way of expressing all the different possible

outcomes so that the events making up the partition (in
this case, A and (not A)) are | mutually exclusive | (if one

of them is true the other one can't be) and |exhaustive

(one of them has to be true) — in the Venn diagram this
just corresponds to the idea that [the area for A] 4 [the
area for (not A)] has to equal the total area of the box

(which, by the argument above, is 1 or 100%):

This gives rise to another basic rule:

For any event A, P(A) 4+ P(not A) =1 =100%.|

This may seem trivial, but a simple rearrangemeht of this
fact actually turns out to be a valuable way to

compute probabilities:

For any event A, P(A) =1- P(not A).
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Basic Rules (continued)

In other words, if you're having trouble working out P(A)
directly you can try to compute P(not A), Whichmay be
easier, and subtract from 1.

In the T-S case study, this observation is helpful: as we

saw above, if these parents are going to have 1 or more

T-S babies there are 5 different ways that could occur

(exactly 1, exactly 2, ..., exactly 5), so
P(A) = P(1 or more T-S babies) sounds difficuit to

compute directly, but there's only one way they can have

(not {1 or more T-S babies}), namely {exactly 0 T-S
babies}, so it'll be easier to compute P(A) indirectly using

the rule for |not |

P(1 or more T-S babies) = 1 ~ P(no T-S babies).

Another way to put it, using Venn diagrames, is that
the events

({exactly 0 T-S babies}, {exactly 1 T-S baby}, {exactly 2
T-S babies}, {exactly 3 T-S babies}, {exactly 4 T-S
babies}, {exactly 5 T-S babies})

form a partition:
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With

Working

OK, we've seen how |not | works; how about |or [? — in
other words, how does P(A or B) relate to the two simpler
ingredients {P(A), P(B)}.

It turns out there are two cases to consider — suppose the
Venn diagram looks like this:

‘ oy
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In this picture A and B don’t overlap, which is equivalent
to saying that they're mutually exclusive — in this case, to
compute the chance the random shot lands in (A or B)
evidently yvou can just add the separate chances
{P(A), P(B) that it lands either in A or in B:

For two mutually exclusive events A and B,
P(A or B) = P(A) 4+ P(B).

Evidently this rule can easily be extended to three or more
mutually exclusive events: if A, B and C have no
(pairwise) overlap, then.

P(Aor Bor C) =P(A) + P(B) + P(C),
and so on.

What about if A and B do-overlap? — then the Venn
diagram would look like this:



